Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202300598, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613187

RESUMO

The arylsulfonamides were synthesized from aryl sulfonyl chloride and aromatic amines in dichloromethane in the presence of pyridine. The aryne chemistry was used to prepare diarylsulfonamide from arylsulfonamides and O-silylaryl triflate with CsF in acetonitrile at room temperature for 30 min. The synthesized compounds were evaluated for cytotoxicity followed by the cytokine/inflammatory marker's inhibition capability and its mechanism of action in RAW-264.7 cells. Elevated interleukin-6 (IL-6) levels have been reported in inflammatory conditions and inflammation-associated disorders. Hence, reducing the IL-6 levels in inflammatory conditions can serve as an attractive therapeutic target in dealing the inflammation. Among 42 compounds, seven compounds showed significant inhibition of IL-6 levels in lipopolysaccharide (LPS) challenged RAW-264.7 cells at 12.5 µM concentration. Further, investigation revealed that the IC50 value of these compounds for reducing IL-6 levels was found to be in the range of 2.6 to 9.7 µM. The promising compounds 5y (IC50 of 2.6 µM) and 5n (IC50 of 4.1 µM) along with other derivatives fulfil drug-likeness parameters laid down by Lipinski's rule of five. Further, RT-qPCR and Western-blot analysis revealed that treatment with 5n significantly reduced the expression of pro-inflammatory, inflammatory and macrophage marker's expression (IL-1ß, CCL2, COX2 and CD68) compared to LPS control. The mechanistic evaluation showed that 5n exhibited anti-inflammatory properties by modulating the nuclear factor-κB (NF-κB) activation. The identified compound can be a promising candidate for further discovery efforts to generate a preclinical candidate effective in inflammation.

2.
Int J Pharm ; 649: 123644, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38040396

RESUMO

Nintedanib (NIN) and pirfenidone are the only approved drugs for the treatment of Idiopathic Pulmonary Fibrosis (IPF). However, NIN and pirfenidone have low oral bioavailability and limited therapeutic potential, requiring higher dosages to increase their efficacy, which causes significant liver and gastrointestinal toxicities. In this study, we aimed to develop nintedanib-loaded solid lipid nanoparticles (NIN-SLN) to improve the oral bioavailability and therapeutic potential against TGF-ß-induced differentiation in IPF fibroblasts and bleomycin (BLM)-induced lung fibrosis in rat models. NIN-SLN was prepared using a double-emulsification method and characterization studies (Particle size, zeta potential, entrapment efficiency and other parameters) were performed using various techniques. NIN-SLN treatment significantly (p < 0.001) downregulated α-SMA and COL3A1 expression in TGF-ß stimulated DHLF and LL29 cells. NIN-SLN showed a 2.87-fold increase in the bioavailability of NIN and also improved the NIN levels in lung tissues compared to NIN alone. Pharmacodynamic investigation revealed that NIN-SLN (50 mg/Kg) treatment significantly attenuated BLM-induced lung fibrosis by inhibiting epithelial-to-mesenchymal-transition (EMT), extracellular matrix remodelling, and collagen deposition compared to free NIN. Additionally, in the BLM model of fibrosis, NIN-SLN greatly improved the BLM-caused pathological changes, attenuated the NIN-induced gastrointestinal abnormalities, and significantly improved the lung functional indices compared to free NIN. Collectively, NIN-SLN could be a promising nanoformulation for the management of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Ratos , Animais , Disponibilidade Biológica , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/uso terapêutico , Bleomicina
3.
Bioorg Med Chem Lett ; 97: 129549, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952597

RESUMO

Therapeutically active lipids in drug delivery systems offer customization for enhanced pharmaceutical and biological effects, improving safety and efficacy. Biologically active N, N-didodecyl-3,4-dimethoxy-N-methylbenzenaminium lipid (Q) was synthesized and employed to create a liposome formulation (FQ) encapsulating melphalan (M) through a thin film hydration method. Synthesized cationic lipids and their liposomal formulation underwent characterization and assessment for additive anti-cancer effects on myeloma and melanoma cancer cell lines. These effects were evaluated through various studies, including cytotoxicity assessments, cell cycle arrest analysis, apoptosis measurements, mitochondrial membrane potential depolarization, DNA fragmentation, and a significant reduction in tumorigenic potential, as evidenced by a decrease in both the number and percentage area of cancer spheroids.


Assuntos
Antineoplásicos , Lipossomos , Humanos , Linhagem Celular , Sistemas de Liberação de Medicamentos , Lipídeos , Melfalan/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia
4.
Int Immunopharmacol ; 124(Pt B): 111070, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862737

RESUMO

Mitochondrial dysfunction due to deregulated production of mitochondria-derived ROS is implicated in the development and progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Recently, we synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and investigated its dose-response therapeutic efficacy in mitigating high-fat diet (HFD)-induced NAFLD and NASH in Apoe-/- mice. Mito-Esc administration, compared to simvastatin and pioglitazone, dose-dependently caused a significant reduction in body weight, improved lipid profile, glucose homeostasis, and pro-inflammatory cytokines level. Mito-Esc administration reduced adipose tissue hypertrophy and lipid accumulation presumably by regulating the levels of CD36, PPAR-γ, EBP-α, and their target genes. Mechanistically, Mito-Esc-induced activation of the AMPK1α-SIRT1 axis inhibited pre-adipocyte differentiation. Conversely, Mito-Esc failed to regulate pre-adipocyte differentiation under AMPK/SIRT1 depleted conditions. In parallel, Mito-Esc administration ameliorated HFD-induced steatosis, fibrosis of the liver, and NAFLD-associated atheromatous plaque formation in the aorta. Importantly, Mito-Esc administration inhibited HFD-induced infiltration of macrophages, a marker of steatohepatitis, in the adipose and liver tissues. The results of the in vitro studies showed that Mito-Esc treatment significantly inhibits TGF-ß-induced hepatic stellate cell differentiation as well as the fibrotic markers. Consistent with the above observations, Mito-Esc treatment by activating the AMPK-SIRT1 pathway markedly reversed palmitate-induced mitochondrial superoxide production, depolarization of mitochondrial membrane potential, and lipid accumulation in HepG2 cells. Together, the therapeutic efficacy of Mito-Esc in the mitigation of HFD-induced lipotoxicity, and the associated NASH is in part, mediated by potentiating the AMPK-SIRT1 axis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/metabolismo , Transdução de Sinais/fisiologia , Fígado/patologia , Mitocôndrias/metabolismo , Fibrose , Lipídeos/uso terapêutico , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
5.
Apoptosis ; 27(11-12): 825-839, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35829938

RESUMO

Polyphenols are naturally occurring organic compounds with varying structures represented by four major groups: flavonoids, phenolic acids, lignans and stilbenes. Several studies suggested that these secondary metabolites have health benefits due to its anti-tumorigenic effect. Therefore, substantial effort has been put forward to isolate and characterize these natural compounds and synthesize analogues that may serve as potential anti-cancer therapeutics. This present study is aimed at designing and synthesis of azaflavanone derivative and in understanding its mechanism of action in vitro and in vivo. Molecular docking studies predicted that the compound can potentially bind strongly to the Cyclin E1-Cdk2 complex which is a key mediator of the cell cycle progression indicating a biological interference in aggressive prostate cancer. Further downstream studies to understand its cytotoxicity and mechanism of action showed this azaflavanone derivative markedly inhibits viability of prostate cancer cells (DU145) showing an IC50 value of 0.4 µM compared to other cancer cells. The pharmacological ROS insult using the azaflavanone derivative increases the oxidative damage leading to high expression of apoptotic markers with increasing concentration. On compound treatment, the cells lose the metabolic flexibility accompanied by mitochondrial dysfunction leading to cell cycle arrest and apoptosis. Further, no compound mediated toxicity was observed in xenograft mouse model of prostate cancer at a concentration as high as 5 mg/kg. The tumor burden was reduced to 60% rendering the azaflavanone derivative a potential candidate in cancer therapeutics. Collectively, the compound triggers cell cycle arrest and ROS mediated oxidative stress sensitizing the cancerous cells towards apoptosis.


Assuntos
Apoptose , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Neoplasias da Próstata/patologia , Proliferação de Células
6.
J Ethnopharmacol ; 298: 115306, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35443217

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Arshakuthar rasa (AR) is a mercury based Ayurvedic herbo-metallic formulation. The concerns are being raised about the probable toxicity of mercury after prolonged use of AR. Hence, there is need for a long-term repeated in vivo toxicity study. The study will provide data with scientific evidence to enable safe use of the drug. Moreover, lack of toxicity study with AR incited us to perform sub-chronic study on rats. AIM OF THE STUDY: The aim of the study is to generate data by performing a sub-chronic study to assess the toxicity of AR after its prolonged oral intake. MATERIALS AND METHODS: The female and male rats were administered with 30 (low), 300 (medium) and 600 mg/kg BW/day (high) dose of AR for 90 consecutive days. The body weight, feed consumption and water intake were monitored weekly. On 91st day, blood was collected from retro-orbital plexus of rats and then sacrificed to harvest the vital organs for biochemical, haematological, histopathological, genotoxicity along with the expression study of oxidative stress related genes and the biodistribution of elements in the blood. RESULTS: Significant alterations in serum biochemical parameters were observed at the medium and high doses. The histopathological changes were in corroboration with biochemical changes at high dose in liver. There was no detectable level of mercury in blood, less to moderate biochemical changes, no haematological changes, moderate regulation of stress-related genes, and low genotoxicity. These results indicated that AR can be considered as moderately toxic above 600 mg/kg BW and mildly toxic at 300 mg/kg BW. CONCLUSIONS: It may be interpreted that AR may not induce grave toxic response in human after long-duration of oral administration at therapeutic doses.


Assuntos
Mercúrio , Extratos Vegetais , Administração Oral , Animais , Feminino , Humanos , Masculino , Ratos , Distribuição Tecidual , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...